

Neurosurgical Robot with Evidence Based Approval by Both NMPA and FDA, from Idea to Product

-3D Structure Light Neurosurgical Robotic System - from China to World

Wu Di, MD Co-Founder, General Manager, Sinovation (Beijing) Medical Technology Co.Ltd

05

robots

Table of content

neurosurgery

with treatment

Solution of accurate diagnosis and treatment in neurosurgery WE DO BETTER

华科公众号

Neurosurgical robots are widely used to assist brain operations

iScience

Review

Neurosurgical robots in China: State of the art and future prospect

Siyu Zhou,^{1,2,3} Yuan Gao,^{1,2,3} Renpeng Li,^{1,2,3} Huizhi Wang,^{1,2,3} Moxuan Zhang,^{1,2,3} Yuzhu Guo,⁴ Weigang Cui,⁴ Kayla Giovanna Brown,^{1,2,3} Chunlei Han,^{2,3} Lin Shi,^{2,3} Huanguang Liu,^{2,3,*} Jianguo Zhang,^{2,3,*} Yang Li,^{4,*} and Fangang Meng^{1,2,3,5,*}

- Brain tumors, medically intractable epilepsy, movement disorders, and other neurological conditions have a worldwide impact on healthcare and often require neurosurgical treatment. More than 10 million patients in China are suffering from them.
- Chinese-made robots can be used in neurosurgery operations, such as intracerebral lesion biopsy, ventriculoperitoneal shunt, Ommaya capsule implantation, intracerebral SEEG electrode implantation, and DBS electrode implantation.
- Neurosurgical robots have been used in more than 200 hospitals in China, with more than 50000 operations, and have accumulated a considerable amount of usage data.
- China has taken a leading position in certain local technologies, such as 3D structured light technology.
- Neurosurgical robotsare increasingly becoming the ideal assistants for surgeons in the field.

Neurosurgical robots are developing fast

Minimally invasive, accurate, frameless and image guided surgeries with the assist of robots may take the place of open/frame based surgery.

Trends in neurosurgical robots

3 trends in neurosurgical robots development

different kinds of neurosurgical robots to satisfy the need s of clinial application

High-end oriented

Multilevel perception Frameless and markerless Ultra high precision

Generalization

Miniaturization Multiple scenarios Intelligent operation Laser ablation Drug injections autonomous operation

Combination with treatment

Trends in neurosurgical robots: high-end oriented

Eyes of neurosurgical robot

Marker registration Sinovation/Rosa

Skin/bone markers First generation Manual > 60 min

Laser registration Sinovation/Rosa

Laser scanning Second generation Automatic,≈10min

Sinovaton

Structured light scanning Third generation Automatic < 3min

Eyes of neurosurgical robot

- Markerless registration technology: automatic scan with **3D structured light** held on the robot arm
- Fast and accurate: registration time is less than 2 minutes and registration accuracy is within 0.5mm.

Brain and arm of neurosurgical robot

Brain: multimodal imaging surgery planning software

Arm: active detection of collision to ensure the safety of patients and surgeons

biopsy/cerebral hemorrage

stereotactic-electroencephalographySEEG

Trigeminal neuralgia microballoon implantation

Laser Interstitial Thermal Therapy LITT

Deep Brain Stimulation

Brain-computer interface Utah array electrode implantation

Trends in neurosurgical robots: generalization

Trends in neurosurgical robots: generalization

- May 31st, 2023
- Northwest Women' s and Children' s Hospital, Xi' an, Shaanxi, China

- 28-week premature infant
- 3-day old
- Weight 1.26kg
- Head diameter 8cm
- Cerebral hemorrage about 14mL
- Very high operation risk
- The head is too small to use the head stand.
- The accuracy of stereotaxic is high.

Technical concerns of neurosurgical robots

Regulator's concerns of neurosurgical robots

	NMPA	FDA
	国家药品监督管理局 National Medical Products Administration	FDA U.S. FOOD & DRUG
Approval Date	2018-12-21	2023-06-18
Device Class	Class III	Class II, 510(k)
Application Period	4 months	18 months
Regulator's Concerns	Software and Cybersecurity	Software and Cybersecurity
	Accuracy	Accuracy
	Clinical Evaluation	/
	/	Usability

Future of neurosurgical robots

iScience

Review

Neurosurgical robots in China: State of the art and future prospect

Siyu Zhou,^{1,2,3} Yuan Gao,^{1,2,3} Renpeng Li,^{1,2,3} Huizhi Wang,^{1,2,3} Moxuan Zhang,^{1,2,3} Yuzhu Guo,⁴ Weigang Cui,⁴ Kayla Giovanna Brown,^{1,2,3} Chunlei Han,^{2,3} Lin Shi,^{2,3} Huanguang Liu,^{2,3,*} Jianguo Zhang,^{2,3,*} Yang Li,^{4,*} and Fangang Meng^{1,2,3,5,*}

GHWP Towards Medical Device Harmonization

Thank you for your attention!