Ministry of Food and Drug Safety Artificial intelligence Medical Device(AIMD) - Regulatory Practice

CONTENTS

1. Launch of Dedicated Division
2. Achievements of Regulatory Improvement 03. Challenges

01. Launch of Dedicated Division

Organization
Chart,
MFDS

- 「Digital Health Devices Division」 was established (2022-2-28)

01. Launch of Dedicated Division

Regulatory Support

\checkmark Regulatory support for digital health products
\checkmark Publication • revision of guidance for digital health products
\checkmark Review of pre-certification of innovative SaMDs manufacturers
\checkmark Designation of innovative SaMDs
\checkmark Providing training for certification bodies \& cybersecurity companies on technical documents
\checkmark Leading \& Contributing to international harmonization of Korean regulation

03. Achievements of Regulatory Improvement

03. Achievements of Regulatory Improvement

\checkmark Publication of IMDRF MLMD Guidance

3-2

Global
Harmonization

- MFDS chaired IMDRF AIMD WG and lead the development of the 1st international guidance for AIMD

```
(4) IMDRF :mamamamamome
```

Final Document

Machine Learning-enabled Medical Devices: Key Terms and Definitions

Artificial Intelligence Medical Devices (AIMD) Working Group

Artificial Intelligence (AI)
Programming computers to perform tasks to mimic human capabilities-such as understanding language, recognizing objects and sounds, learning, and problem solving - by using logic, decision trees, machine learning, or deep learning Machine Learning (ML)
Subset of Al that gives "Computers the ability to learn without being explicitly programmed

※The descriptions within the diagram are not definitions, and are included to convey a general sense of the technology.

03. Achievements of Regulatory Improvemen

Communication \&

Collaboration

Coordination, Consultation
NAVER kakaohealthcare
kt kakaobrain 다 LG U+

Academy

- The Korean Society of Medical\&Biological and Engineering
- The Korean Society of Medical Informatics
- Korean Society of Artificial Intelligience in Medicine
- Korean Society for Digital Therapy
- Korea Medical Devices Industry Association
- Korea Medical Devices Industrial Cooperative Association
- Korea Smart Healthcare Association

Korea Digital Health Industry Association

04. Challenges

4-1

EverEvolving Al Technology

moaven
Llama 2
-

GPT-4 VS HUMAN TESTS (APR/2023)

Comment

https://doi.org/10.1038/s41591-023-02412-6

Large language model Alchatbots require approval as medical devices

Stephen Gilbert, Hugh Harvey, Tom Melvin, Erik Vollebregt \& Paul Wicks

- Check for updates
hatbots powered by artificial intelligence used in patient care are regulated as medical devices, but their unreliability precludes pproval as such.

Every new technology must satisfy concerns of safety, performance and risk/benefit to flourish.Large language models (LLMs) are neura
networklanguage models that include OpenAl's G enerative pre-trained transformer (GPT) and Google's Pathways Language Model (PaLM) ChatGPT is an LLM chatbot launched in November 2022that has remarkable conversational capability and the capacity to near-instantly and reatively mimic different human conversational styles on request ${ }^{23}$ sunderlying LLM was updated from GPT-3.5 to GPT-4 in March 2023 . in which information exchange, advice and the linking of information flows are crucial parts of service delivery ${ }^{3}$. Today, however, devel opers of LLM chatbots acknowledge that they often generate highly convincing statements that are verifiably wrong, as well as sometime
hallucinating information or providing inappropriate responses to questions ${ }^{23}$ (Table 1).
LLMchatbots producea reasonable continuation' of text, starting from a prompt, using their tokenized encoding of language extracte rom billions of unidentified general web pages and books ${ }^{\text {s }}$. Their with numerous trial-and-error human decisions to optimize thei plausibility and reasonableness. Today there is no way to be certain about the quality, evidence level or consistency of clinical informa ion or supporting evidence for any LLM response. LLMs simply reas semble what was most commonly written by humans ${ }^{5}$, and when
askedto produce a source, they will frequently inventa a plausible, bu nonexistent, citation ${ }^{6}$.

Table 1|Challenges in the regulatory approval of large language models

Challenge	Details
Verification	Near-infinite range of inputs and outputs, including hallucinated outputs, make these models untestable
Provenance	No control over provenance when used as an underlying model on which a medical device is built
Changes	Not a fixed model, as the generative approaches and the manual and automated constraining of outputs (for example, to limit harmful advice) can be adapted on market
Usability	Near-infinite range of user experiences, depending on the input
Risks	No proven method to prevent harmful outputs
Surveillance	A near-infinite number of outputs make surveillance impossible

rearinitrage finputsandoutut challenging to test the usability and on market performance of 4 M and so it is questionable whether their tendency to suggest harmful or false - yet highly plausible - information can ever be controlled (Table 1). In their current state, LLMs do not ask for missing information needed to provide an accurate answer, provide no accompanyin no genuine sources. This rules out their use in the USA for non-device clinical decision support. It also makes it extremely challenging to verify the outputs of the design process, mitigate all identified risk and demonstrate valid clinical association between inputs and outpus, ooth prior to approval and in ongoing monitoring after their marke devices under current EU Iaw.

03. Challenges

4-2

Issues to be addressed

Pathway for Safety and Effectiveness of General AI-based Medical Devices

- Decision making criteria on the scope of medical devices/non-medical devices
- Assessment criteria and verification methods
- Essential principles for clinical trials (quantitative • objective assessment of Al-Human interaction), etc

Pathway for Safety Management of

Continuous Learning-based Medical Devices

- Methodology for change approval (subject of change approval, assessment methods)

O Performance monitoring of Al-based medical devices used in the real word (key index, monitoring strategies, R\&R)

- Need for developing certain platforms to be used in managing performance of the products for the public

국민 안심이 기준입니다

YOUR SAFETY IS OUR STANDARDDrug Safety

