Regulatory Pathways for Innovative Products

Kenneth J. Cavanaugh Jr, Ph.D.
Deputy Director, Office of Cardiovascular Device Center for Devices and Radiological Health
U.S. Food and Drug Administration
U.S. FDA Center for Devices and Radiological Health (CDRH)

• Ensure patients and providers have timely and continued access to safe, effective, and high-quality medical devices and safe radiation-emitting products.

• Facilitates medical device innovation by advancing regulatory science, providing industry with predictable, consistent, transparent, and efficient regulatory pathways, and assuring consumer confidence in devices marketed in the U.S.
Regulatory Pathways

- **Breakthrough Device Program (BD)**
 - Devices providing more effective diagnosis/treatment of life-threatening/irreversibly debilitating disease as compared to available alternatives

- **Safer Technologies Program (STeP)**
 - Non-breakthrough devices offering safety advantages as compared to available alternatives
BD/STeP Features

• Increased opportunity for communication with CDRH
• Early engagement on data development plans
• Devices more likely to involve consideration of:
 – Benefit-risk assessment
 – Creative and flexible clinical study designs
 – Premarket-postmarket balance
How does CDRH promote innovation of digital health technologies?
Regulation of Digital Health

• DH technologies are regulated similarly to traditional devices

- Device
 - Class I?
 - No submission
 - Class II?
 - Moderate risk (510(k), De Novo)
 - Class III?
 - High risk (PMA, HDE)
 - Quality Systems
 - Inspections
 - Medical Device Reporting
 - Recalls/Corrections
 - Manufacturing Submissions

• However, some SaMD aspects involve more risk than others
Software as a Medical Device (SaMD)

• Take “function-based” approach and regulated functions individually
 – Impact assessment
 – Some functions exempt by law or policy
Software Pre-Certification Pilot

Goal: Provide a streamlined path to market for innovative SaMD products

Completed September 2022
Artificial Intelligence / Machine Learning (AI/ML)

• Unique challenges associated with growth in AI/ML:
 – Datasets
 – “Black box” algorithms
 – Validation
 – Communicating with clinicians and patients
 – Facilitating innovation and iterative development
GMLP Guidelines

Goal: Facilitate development of Good Machine Learning Practices that address important AI/ML topics

Good Machine Learning Practice for Medical Device Development:
Guiding Principles
October 2021

<table>
<thead>
<tr>
<th>Good Machine Learning Practice for Medical Device Development: Guiding Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Disciplinary Expertise are Leveraged Throughout the Total Product Life Cycle</td>
</tr>
<tr>
<td>Clinical Study Participants and Data Sets are Representative of the Intended Population</td>
</tr>
<tr>
<td>Selected Reference Datasets are Based Upon Best Available Methods</td>
</tr>
<tr>
<td>Focus is Placed on the Performance of the Human-AI Team</td>
</tr>
<tr>
<td>Users are Provided Essential Information Clearly</td>
</tr>
</tbody>
</table>
Pre-Determined Change Control Plan (PCCP)

- Allows for iterative changes after devices receive marketing authorization
 - Signed into law in December 2022
 - Not limited to AI/ML devices

<table>
<thead>
<tr>
<th>SaMD Pre-Specifications (SPS)</th>
<th>Algorithm Change Protocol (ACP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draws a region of potential changes around the initial specifications and labeling of the original device.</td>
<td>For new training & test data:</td>
</tr>
<tr>
<td></td>
<td>Collection procedure</td>
</tr>
<tr>
<td></td>
<td>Qualification</td>
</tr>
<tr>
<td></td>
<td>Performance standard and determination</td>
</tr>
<tr>
<td></td>
<td>Auditing and resubmission of training and test sets</td>
</tr>
</tbody>
</table>

Data Management
- For new training & test data:
 - Collection & processing
 - Qualification
 - Performance standard and determination
 - Auditing and resubmission of training and test sets

Retraining
- Changes to training sets:
 - ML methods, including architecture and parameters
 - Data & preprocessing
 - Criteria for reference performance evaluation

Performance Evaluation
- Assessment metrics:
 - Statistical analysis plans
 - Analysis and results for evaluation
 - Performance targets
 - Methods for slicing and "tolerance in the loop" when necessary

Update Procedures
- Software verification and validation
 - When and how updates will be implemented
 - Plans for global and local updates
 - Communication and transparency to users
What about scientific/clinical evaluation methods?
Early Feasibility Studies (EFS)

• Promote early-stage clinical research in U.S.
 – Small number of subjects
 – Device design not necessarily final
 – “Just-in-time” non-clinical testing

• Additional focus on streamlining non-regulatory processes
 – Site initiation
 – Reimbursement
Novel Evaluation Methods

• Real-world evidence (RWE)
 – Regulatory application of clinical data from non-traditional sources

• Decentralized clinical trials
 – Alternative to site-based clinical studies

• Incorporating additional perspectives
 – Patients
 – Payers
Modeling & Simulation

In silico approaches can provide a complement or alternative to traditional *in vitro* or *in vivo* approaches.
Lessons From the COVID Pandemic

- Consider what pandemic-related changes can be adopted permanently
- Incorporate pragmatic approaches to clinical trial conduct and interpretation to minimize disruptions
- Harden the medical device supply chain
How do harmonization efforts promote innovation?
Global Innovation

Ongoing innovation of medical devices creates additional **global** value in:

- Aligning regulatory approaches
- Building platforms to better evaluate devices across their lifetimes
- Establishing networks
Facilitating Global Strategies

- Regulatory approaches
 - CDRH-Health Canada eSTAR pilot
 - Safety and performance-based 510(k) pathway

- Evaluation criteria
 - Developing essential principles
 - Recognized consensus standards

- Clinical study harmonization
 - Multi-national standardization of outcome measures
Additional Opportunities

- Proactive discussions with global partners can help align approaches and promote convergence
 - Regulator-industry
 - Regional
 - Outreach to other stakeholders

- **Shared goal:** Increase efficiency and reduce risk when developing a novel product for the global market
Thank you!
شكراً